On the Transition Law of Tempered Stable Ornstein–uhlenbeck Processes
نویسندگان
چکیده
In this paper, a stochastic integral of Ornstein–Uhlenbeck type is represented to be the sum of two independent random variables: one has a tempered stable distribution and the other has a compound Poisson distribution. In distribution, the compound Poisson random variable is equal to the sum of a Poisson-distributed number of positive random variables, which are independent and identically distributed and have a common specified density function. Based on the representation of the stochastic integral, we prove that the transition distribution of the tempered stable Ornstein–Uhlenbeck process is selfdecomposable and that the transition density is a C∞-function.
منابع مشابه
Infinite Variation Tempered Stable Ornstein-Uhlenbeck Processes with Discrete Observations
We investigate transition law between consecutive observations of Ornstein-Uhlenbeck processes of infinite variation with tempered stable stationary distribution. Thanks to the Markov autoregressive structure, the transition law can be written in the exact sense as a convolution of three random components; a compound Poisson distribution and two independent tempered stable distributions, one wi...
متن کاملExact discrete sampling of finite variation tempered stable Ornstein-Uhlenbeck processes
Exact yet simple simulation algorithms are developed for a wide class of Ornstein–Uhlenbeck processes with tempered stable stationary distribution of finite variation with the help of their exact transition probability between consecutive time points. Random elements involved can be divided into independent tempered stable and compound Poisson distributions, each of which can be simulated in th...
متن کاملConnection between deriving bridges and radial parts from multidimensional Ornstein-Uhlenbeck processes
First we give a construction of bridges derived from a general Markov process using only its transition densities. We give sufficient conditions for their existence and uniqueness (in law). Then we prove that the law of the radial part of the bridge with endpoints zero derived from a special multidimensional Ornstein-Uhlenbeck process equals the law of the bridge with endpoints zero derived fro...
متن کاملTempering stable processes
A tempered stable Lévy process combines both the α–stable and Gaussian trends. In a short time frame it is close to an α–stable process while in a long time frame it approximates a Brownian motion. In this paper we consider a general and robust class of multivariate tempered stable distributions and establish their identifiable parametrization. We prove short and long time behavior of tempered ...
متن کاملLimit Theorems for Multifractal Products of Geometric Stationary Processes
Abstract: We investigate the properties of multifractal products of geometric Gaussian processes with possible long-range dependence and geometric Ornstein-Uhlenbeck processes driven by Lévy motion and their finite and infinite superpositions. We present the general conditions for the Lq convergence of cumulative processes to the limiting processes and investigate their q-th order moments and R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009